浮游植物分類熒光儀——PHYTO-PAM-II
日期:2017-01-04 22:12:05

主要功能

●對自然水體中的藍(lán)藻、綠藻、硅/甲藻和隱藻自動分類(定性)

●自動測量水樣中藍(lán)藻、綠藻、硅/甲藻和隱藻的葉綠素 a 含量(定量)和總?cè)~綠素 a 含量

●一杯自然水樣,同時獲得藍(lán)藻、綠藻、硅/甲藻和隱藻的光合活性:

●光合效率和光合速率(相對電子傳遞速率)

●快速光曲線并進(jìn)行擬合

●藻類的潛在最大光合效率

●藻類的光保護(hù)能力

●藻類耐受強(qiáng)光的能力

●用戶可做自己的參考光譜


測量參數(shù)

Fo, Fm, F, Fm', Fv/Fm, Y(II) 即 ΔF/Fm', ETR, a, Ik, Pm, PAR 和葉綠素含量等

 

應(yīng)用領(lǐng)域

●主要用于水生生物學(xué)、水域生態(tài)學(xué)、海洋學(xué)、湖沼學(xué)、水質(zhì)預(yù)警、微藻生理學(xué)、微藻抗逆性等領(lǐng)域,對于了解自然水樣中藻類種群的動態(tài)變化、水華預(yù)警、野外水體中光合作用的時空變化、校正初級生產(chǎn)力的計算等有較大幫助。

●特別適于浮游植物動力學(xué)研究和有害水華的早期預(yù)警。

 

主要技術(shù)參數(shù)

●主控單元:金屬外殼,包含所有的光電元件及樣品測量室

●測量光: LED,440 nm,480 nm,540 nm,590 nm 和 625 nm,5 波長脈沖調(diào)制測量光,2 檔強(qiáng)度設(shè)置,8 檔調(diào)制頻率設(shè)置, 3 檔測量光自動高頻設(shè)置

●光化光:板載多波長 LED 陣列,440 nm,480 nm,540 nm,590 nm,625 nm 和 420-640 nm(白光),提供持續(xù)光化光,最高可達(dá) 1400 μmol m-2 s-1,快速動力學(xué)閃光高達(dá) 7000 μmol m-2 s-1,飽和脈沖最高可達(dá) 5000 μmol m-2 s-1

●遠(yuǎn)紅光:725 nm LED

●信號檢測:基于 H-10720 光電傳感器模塊的光電倍增檢測器

●標(biāo)準(zhǔn)檢測過濾器:> 650 nm 長通濾光片

●高分辨率的光電倍增管,葉綠素濃度檢測限低至 0.1μg/L,適用野外采集的藻濃度很稀的樣品

 

升級的技術(shù)特點(diǎn)

●可提供 5 種波長的脈沖調(diào)制測量光和光化光

●板載 LED 陣列芯片技術(shù)

●可實時進(jìn)行四種藻的分類

●可進(jìn)行標(biāo)準(zhǔn) PAM 測量及不同波長強(qiáng)光化光誘導(dǎo)的毫秒級熒光上升動力學(xué)分析

●可測定光系統(tǒng) II 功能性捕光截面積

●內(nèi)置自動測量程序,易于操作

 

PHYTO-PAM-II vs PHYTO-PAM

  便攜式 PHYTO-PAM-II

  PHYTO-PAM

  5 種不同波長的測量光用于生物體內(nèi)不同類型的天線色素?zé)晒獾募ぐl(fā)

  4 種不同波長的光

  4 種色素類型的在線分類

  3 種色素類型的在線分類

  6 種波長的光化光

  1 種波長的光化光

  可以分別測量綠藻,藍(lán)藻,硅/甲藻以及含有藻紅蛋白的有機(jī)體,如隱藻不同波長下 PSII 的活性

  無該功能

  緊湊型設(shè)計

  需要組裝

  增加了快速動力學(xué)操作模式,可通過強(qiáng)光化光脈沖,測量不同波長的 O- I1 熒光上升動力學(xué)曲線

  無該功能

  通過測定不同光質(zhì)和光合生物色素復(fù)合體,獲得光系統(tǒng) II 功能性捕光截面積的信息即 σPSII

  無該功能

  通過 FluoRed 熒光標(biāo)準(zhǔn)將參考光譜校準(zhǔn)標(biāo)準(zhǔn)化

  無該功能

  獲得的參考光譜可在不同設(shè)備及用戶間互換使用

  參考光譜不能互換

  

選購指南

一、實驗室測量基本款

系統(tǒng)組成:實驗室版主機(jī),激發(fā)檢測單元,懸浮液的光學(xué)單元,球形光量子傳感器,工作臺,軟件等

注意:新版 PHYTO-PAM-II 必須配置光量子傳感器,校準(zhǔn)光強(qiáng)后參考光譜可在不同儀器間通用

Phyto-PAM II laboratory version.jpg

實驗室測量基本款

  

二、野外便攜緊湊款

系統(tǒng)組成:緊湊型主機(jī),球形光量子傳感器,軟件等

注意:新版 PHYTO-PAM-II 必須配置光量子傳感器,校準(zhǔn)光強(qiáng)后參考光譜可在不同儀器間通用

Phytho-PAMM-II_071_1-small-2.jpg

便攜式緊湊款


Channels.jpg

algae.jpg

Reference.jpg

五種測量光通道

區(qū)分四種藻類

通用型參考光譜

軟件界面7.png

light-curve.jpg

Fast-Kinetics.jpg

測量慢速動力學(xué)曲線

淬滅分析,暗弛豫分析

測量快速光曲線

光響應(yīng)曲線

測量快速動力學(xué)曲線

分析PSII功能性捕光截面


三、其他可選附件

1,WATER-S:攪拌器(推薦選配),利用內(nèi)置電池驅(qū)動的馬達(dá)帶動攪拌棒旋轉(zhuǎn),對樣品杯里的懸浮液進(jìn)行攪拌。需配置攪拌棒 WATER-R。

2,WATER-R:攪拌棒(標(biāo)配10根)

 

產(chǎn)地:德國WALZ


參考文獻(xiàn)

數(shù)據(jù)來源:光合作用文獻(xiàn) Endnote 數(shù)據(jù)庫,更新至 2021 年 1 月,文獻(xiàn)數(shù)量超過 10000 篇

原始數(shù)據(jù)來源:Google Scholar

Gao, K., et al. (2021). "Research Methods of Environmental Physiology in Aquatic Sciences."

Reis, L. L. d., et al. (2021). "Using multiple endpoints to assess the toxicity of cadmium and cobalt for chlorophycean Raphidocelis subcapitata." Ecotoxicology and Environmental Safety 208: 111628.

Garg, A., et al. (2020). "A relook into plant wilting: observational evidence based on unsaturated soil–plant-photosynthesis interaction." Scientific Reports 10(1): 22064.

Marazzi, F., et al. (2020). "Interactions between microalgae and bacteria in the treatment of wastewater from milk whey processing." Water 12(1): 297.

Ostrovsky, I., et al. (2020). "Bloom-forming toxic cyanobacterium Microcystis: Quantification and monitoring with a high-frequency echosounder." Water research: 116091.

Qi, J., et al. (2020). "Growth inhibition of Microcystis aeruginosa by sand-filter prevalent manganese-oxidizing bacterium." Separation and Purification Technology: 117808.

Rocha, M. A. M. (2020). "Evaluating the impact of hydrogen peroxide on the phytoplankton community: a bench scale study."

Soto, D. F., et al. (2020). "Microbial composition and photosynthesis in Antarctic snow algae communities: Integrating metabarcoding and pulse amplitude modulation fluorometry." Algal Research 45: 101738.

Sui, M., et al. (2020). "Highly efficient nitrate reduction driven by an electrocoagulation system: An electrochemical and molecular mechanism." Bioelectrochemistry 133: 107454.

Zhang, X., et al. (2020). "Photosynthetic Properties of Miscanthus condensatus at Volcanically Devastated Sites on Miyake-jima Island." Plants(9): 1212.

Abate, R., et al. (2020). "Enhancing the production of a marine diatom (Skeletonema costatum) with low-frequency ultrasonic irradiation." Journal of Applied Phycology.

Alho, L. d. O. G., et al. (2020). "Photosynthetic, morphological and biochemical biomarkers as tools to investigate copper oxide nanoparticle toxicity to a freshwater chlorophyceae." Environmental Pollution 265: 114856.

Andrzejczak, O. A., et al. (2020). "The Hypoxic Proteome and Metabolome of Barley (Hordeum vulgare L.) with and without Phytoglobin Priming. ." Int. J. Mol. Sci(21): 1546.

Bartual, A., et al. (2020). "Types and Distribution of Bioactive Polyunsaturated Aldehydes in a Gradient from Mesotrophic to Oligotrophic Waters in the Alborán Sea (Western Mediterranean)." Marine drugs 18(3): 159.

Bespalova, S. V., et al. (2020). "Fluorimetric Analysis of the Impact of Coal Sludge Pollution on Phytoplankton." Biophysics 65(5): 850-857.

Chen, S., et al. (2020). "Biochemical responses of the freshwater microalga Dictyosphaerium sp. upon exposure to three sulfonamides." Journal of Environmental Sciences 97: 141-148.

Chen, S., et al. (2020). "Sulfonamides-induced oxidative stress in freshwater microalga Chlorella vulgaris: Evaluation of growth, photosynthesis, antioxidants, ultrastructure, and nucleic acids." Scientific Reports 10(1): 8243.

Chu, F., et al. (2020). "Enhanced lipid accumulation through a regulated metabolic pathway of phosphorus luxury uptake in the microalga Chlorella vulgaris under nitrogen starvation and phosphorus repletion." ACS Sustainable Chemistry & Engineering.

Ferr?o-Filho, A., et al. (2020). "Can small-bodied Daphnia control Raphidiopsis raciborskii in eutrophic tropical lakes? A mesocosm experiment." Environmental Science and Pollution Research.

Gao, X., et al. (2020). "Particulate organic matter as causative factor to eutrophication of subtropical deep freshwater: Role of typhoon (tropical cyclone) in the nutrient cycling." Water research: 116470.

Huang, Y.-R., et al. (2020). "An investigation of mechanisms for the enhanced coagulation removal of Microcystis aeruginosa by low-frequency ultrasound under different ultrasound energy densities." Ultrasonics Sonochemistry 69: 105278.

Lines, T., et al. (2020). "Elevated co2 has differential effects on five species of microalgae from a sub-tropical freshwater lake: possible implications for phytoplankton species composition."  n/a(n/a).

Liu, N., et al. (2020). "Mechanisms of cetyltrimethyl ammonium chloride-induced toxicity to photosystem II oxygen evolution complex of Chlorella vulgaris F1068." Journal of hazardous materials 383: 121063.

Lund-Hansen, L., et al. (2020). "Effects of increased irradiance on biomass, photobiology, nutritional quality, and pigment composition of Arctic sea ice algae." MARINE ECOLOGY PROGRESS SERIES.

Moreira, R. A., et al. (2020). "Exposure to environmental concentrations of fipronil and 2,4-D mixtures causes physiological, morphological and biochemical changes in Raphidocelis subcapitata." Ecotoxicology and Environmental Safety 206: 111180.

Rocha, G. S., et al. (2020). "Shifts in photosynthetic parameters and lipid production of the freshwater microalga Selenastrum gracile (Chlorophyceae) under cadmium exposure." Journal of Applied Phycology.

Schanke, N. L., et al. (2020). "Biogeochemical and ecological variability during the late summer–early autumn transition at an ice-floe drift station in the Central Arctic Ocean."  n/a(n/a).

Shang, T., et al. (2020). "Cell density-dependent suppression on the development and photosynthetic activities of Sargassum fusiformis embryos by dinoflagellate Karenia mikimotoi." Harmful Algae 96: 101842.

Shi, Y., et al. (2020). "The effect of plant extracts on growth and photosynthetic fluorescence characteristics of Microcystis flos-aquae." Water Science and Technology.

Wang, X., et al. (2020). "Phenanthrene and pyrene disturbed the growth of Microcystis aeruginosa as co-cultured with Chlorella pyrenoidosa." Environmental Science and Pollution Research.

Wu, S., et al. (2020). "A rise in ROS and EPS production: new insights into the Trichodesmium erythraeum response to ocean acidification."  n/a(n/a).

Xiao, M., et al. (2020). "Intra-population strain variation in phosphorus storage strategies of the freshwater cyanobacterium Raphidiopsis raciborskii." FEMS microbiology ecology.

Xiao, Y., et al. (2020). "The Role of Cyanobacterial External Layers in Mass Transfer: Evidence from Temperature Shock Experiments by Noninvasive Microtest Technology." Microorganisms( 8): 861.

Yang, Z., et al. (2020). "Temperature triggers the annual cycle of Microcystis, comparable results from the laboratory and a large shallow lake." Chemosphere 260: 127543.

Zhang, X., et al. (2020). "Photosynthetic Properties of Miscanthus condensatus at Volcanically Devastated Sites on Miyake-jima Island." Plants(9): 1212.

Zhang, Y., et al. (2020). "Photosynthesis and related metabolic mechanism of promoted rice (Oryza sativa L.) growth by TiO2 nanoparticles." Frontiers of Environmental Science & Engineering 14(6): 103.

Zheng, X., et al. (2020). "Polystyrene nanoplastics affect growth and microcystin production of Microcystis aeruginosa." Environmental Science and Pollution Research.

收 藏
上一篇:已經(jīng)沒有了