農(nóng)業(yè)基因組學(xué)解決方案
日期:2017-05-15 11:41:54

農(nóng)業(yè)基因組學(xué)解決方案

適合您所有研究階段的平臺

來自Affymetrix的農(nóng)業(yè)基因組學(xué)解決方案為育種者和研究人員提供了一系列強大而靈活的基因分型工具,可經(jīng)濟高效地鑒定、驗證并篩查植物和動物中的復(fù)雜遺傳性狀。


Affymetrix的遺傳分析工具讓您有能力:

發(fā)現(xiàn)

通過遺傳分析技術(shù)確定de novo遺傳多樣性

分析群體結(jié)構(gòu)


關(guān)聯(lián)

鑒定與理想性狀相關(guān)的遺傳標(biāo)記

確認標(biāo)記-性狀關(guān)聯(lián)

了解對環(huán)境的遺傳適應(yīng)性


管理

利用遺傳信息來選取期望的結(jié)果

篩查植物和動物的理想性狀


基于芯片的基因分型的優(yōu)點:

經(jīng)濟

經(jīng)濟高效的基因分型工具


簡單

在單個技術(shù)平臺上結(jié)合多個基因分型應(yīng)用

輕松且簡單的流程

幾小時內(nèi)即可獲得準(zhǔn)確的結(jié)果


靈活

高通量的基因分型工具適合高密度或靶向基因分型應(yīng)用

能基因分型所有您感興趣的相關(guān)的標(biāo)記

低樣品量需求


來自Affymetrix的基于芯片的基因分型產(chǎn)品為從全基因組分析到常規(guī)篩查的各種應(yīng)用提供了完整的解決方案,且準(zhǔn)確性和重復(fù)性高、流程簡單、成本低。


Axiom?基因分型解決方案為您提供多種芯片。您可以選擇要研究物種的自定義內(nèi)容,也可以選擇來自Axiom?基因組數(shù)據(jù)庫的基因型經(jīng)過驗證的內(nèi)容。


強大

■ 對任何物種、任何基因組規(guī)模和任何倍性水平進行基因分型

■ Axiom?分析可檢測插入或缺失(indel)并保證包含所有候選SNP,與相鄰SNP最近可達10 bp,實現(xiàn)了更高效的QTL分析


可靠

■ 低至100 ngDNA,即可獲得基因分型結(jié)果,適用于各種樣本類型

■ 基因型檢出率≥99%


擴展

■ 完全自動化的流程,每周可處理最多8張芯片板,而無需增加人工或儀器

■ 一張芯片板上有96個或384個樣本

■ 檢測每個樣品多達260萬個變異




植物基因分型解決方案

自動化檢出多倍體和二倍體基因型,無須手動操作

Affymetrix與學(xué)術(shù)研究機構(gòu)和商業(yè)種子公司的科學(xué)家們合作,為多種植物設(shè)計芯片,包括水稻、小麥、玉米、土豆、西紅柿、棉花、大豆、草莓、及景觀植物。這些芯片讓研究人員能夠鑒定出與理想的表型性狀相關(guān)的基因。

blob.png

■ Affymetrix已開發(fā)出先進的基因型算法和軟件工具,能對非二倍體復(fù)雜基因組自動分析

■ 該算法提供了可調(diào)的參 數(shù),可對近交系群體及基因組偏離參考序列的樣品 進行準(zhǔn)確分型

blob.png

Axiom?玉米基因分型芯片

■ 目前唯一一款高密度覆蓋玉米SNP位點的基因分型芯片,包含609,442個SNP和6,759個插入/缺失。

■ 這些標(biāo)記在288個世界主要的不同品系玉米樣本上進行包含120萬個SNP位點的Axiom? myDesign? GenotypingArray的篩選獲得。

■ AffymetrixSNPolisher? Analysis對SNP進行準(zhǔn)確的分型。



blob.png

Axiom?小麥基因分型芯片

■ 高覆蓋度的小麥基因分型芯片。采用96芯片板模式,與布里斯托大學(xué)合作,為全球小麥品系所設(shè)計,包含817,000個SNP位點,覆蓋整個小麥基因組,大大加速現(xiàn)代小麥分子育種進程。

■ 經(jīng)育種研究人員精心挑選,在優(yōu)良小麥品系六倍體中表現(xiàn)多態(tài)性,包括了國際小麥測序協(xié)會(IWGSC)所確定的片段重疊群的SNP標(biāo)記,共35,143個標(biāo)記,分布于A、B和D基因組中。



blob.png

Axiom?棉花基因分型芯片

棉花基因分型芯片總共包含35,550個標(biāo)記

■ 28,158個利用陸地棉(G. hirsutum)的基因富集序列區(qū)域鑒定出的種內(nèi)特異性標(biāo)記。

■ 7,392個利用基因組簡化方法發(fā)現(xiàn)的標(biāo)記,基于限制性酶切位點的保守性(GR-RSC)。

■ 5,286個在陸地棉(G. hirsutum)和海島棉(G. barbadense)種間組裝過程中發(fā)現(xiàn)的標(biāo)記。

■ 2,016個陸地棉(G. hirsutum)種內(nèi)特異性標(biāo)記。

■ 芯片上可以添加380,000個定制標(biāo)記,或以100%的保真度向Axiom? 384HT myDesign?育種者芯片上轉(zhuǎn)移多態(tài)性標(biāo)記,以應(yīng)

對不同群體的樣本研究和分析的需要。



blob.png

Axiom?大豆基因分型芯片

總共180,961個標(biāo)記選自20條大豆染色體,代表野生種和栽培種

■ 114,735個SNP或63.4%的標(biāo)記位于40,631個基因中。

■ 22,952個SNP位于基因上游或下游5kb的13,259個區(qū)域內(nèi)。

■ 43,274個SNP位于基因間區(qū)域。

■ SNP的發(fā)現(xiàn)和驗證是利用韓國16個大豆品種和中國31個大豆品種的組合來完成的。

■ 此芯片經(jīng)過228個品系組合的評估,這些品系包括高深度的重測序品系、不同來源的重復(fù)DNA樣本、重復(fù)DNA樣本、不同的栽培和野生品系,以及多個F2代和重組自交系。


blob.png

Axiom?草莓基因分型芯片

芯片對栽培種雜交草莓(Fragaria x ananassa)全基因組進行覆蓋

■ 95,062個來自八倍體和二倍體品種的SNP和插入缺失,包括:1,761個復(fù)等位基因SNP和3,751個來自二倍體品種的SNP。

■ 代表多個草莓品種,多樣化的全球育種種質(zhì)資源集促進了SNP的開發(fā)。

■ SNP的發(fā)現(xiàn),通過超過20倍覆蓋度對9個八倍體品種進行測序分析,包括Holiday、Korona以及Holiday與Korona雜交的F1幼苗;兩個可能的二倍體祖先,F(xiàn)ragariamandschurica和F. iinumae;一個已知的二倍體品種,F(xiàn). vesca測序數(shù)據(jù)與F. vesca基因組序列進行比對。




blob.png

Axiom?玫瑰基因分型芯片

■ Axiom?玫瑰基因分型芯片(WagRhSNP Axiom Array)是通過Affymetrix?專家設(shè)計項目與荷蘭瓦格寧根大學(xué)植物育種組和德

國萊布尼茨大學(xué)植物遺傳學(xué)研究所合作設(shè)計的。

■ 總共68,893個SNP,它們精選自四倍體鮮切花玫瑰和花園玫瑰品種。

■ 應(yīng)對玫瑰的復(fù)雜性狀研究:多倍體連鎖圖譜,SNP單倍型鑒定,重要表型性狀相關(guān)聯(lián)的QTL分析。

■ 672個樣本利用Axiom 玫瑰基因分型芯片進行了基因分型驗證,包括:四倍體鮮切花玫瑰群體K5,四倍體花園玫瑰,倍性水平從二倍體(2x)到五倍體(5x)的13個品種。


blob.png
Axiom? myDesign? 基因分型定制芯片

靈活、經(jīng)濟高效的基因分型定制芯片

Affymetrix為研究人員個人或協(xié)作組提供經(jīng)濟的基因分型定制芯片。與我們的生物信息學(xué)團隊合作,為多個應(yīng)用(從發(fā)現(xiàn)到查)設(shè)計帶有相關(guān)內(nèi)容的芯片。

每批一致的SNP內(nèi)容和快速的周轉(zhuǎn)時間

■ 每一筆訂單獲得100%相同的SNP內(nèi)容,只要您的研究需要

■ 無SNP丟失-每次芯片上的內(nèi)容都一致靈活的定制格式

靈活的定制格式

■ 可在同一張芯片上包含多個物種的標(biāo)記

■ 每張芯片上可設(shè)計1,500-675,000個SNP的多重分析,性價比高,讓您獲得更多信息可擴展性

可擴展性

■ 480個樣品的低起定量可滿足您的預(yù)算

■ 再次訂購低至192個樣品的定制芯片,以完成您的研究


blob.png

blob.png



軟件自動檢出多倍體及二倍體基因型

通過專業(yè)的生物信息學(xué)支持和簡化的軟件,大大加速您的分析流程

強大的信息學(xué)支持

■ Axiom?軟件利用統(tǒng)計學(xué)聚類預(yù)測工具FitAllo及AxiomGT1算法,能準(zhǔn)確并靈活地將基因型區(qū)分聚類,并

檢出多倍體及二倍體的基因型

與您現(xiàn)有的系統(tǒng)整合

■ 自動化程度高的選項:基于命令行的Affymetrix? PowerTools(APT)

■ 無縫整合第三方軟件包

■ 與32位和64位的Windows? 7和Windows Server 2008操作系統(tǒng)兼容

簡化的數(shù)據(jù)分析

■ 包括靈活的SNP過濾和輸出工具,可輸出成PLINK格式

■ 可視化工具包括散點圖、曲線圖和熱圖

■ SNPolisher軟件包能將SNP自動分類,方便您對基因型質(zhì)控(如下圖所示)

blob.png

農(nóng)業(yè)基因組學(xué)項目合適的平臺選擇

不犧牲數(shù)據(jù)質(zhì)量和周轉(zhuǎn)時間

新一代測序的快速發(fā)展幫助農(nóng)業(yè)科學(xué)家建立起基因組的廣泛資源,這將打造成一個“基因組文庫的生動世界”??蒲袑W(xué)者、動物育種專家和商業(yè)種子公司都開始涉足這個龐大的基因組文庫資源,從而加強農(nóng)業(yè)基因組學(xué)策略。通過應(yīng)用基因組標(biāo)記來鑒定和選

擇重要性狀,他們的目標(biāo)是提高生產(chǎn)力和商業(yè)可行性。本技術(shù)指南整合了同行評議的雜志中介紹的基于序列的基因分型方法的經(jīng)驗,并比較了芯片在農(nóng)業(yè)基因分型應(yīng)用中的表現(xiàn),以便協(xié)助您作出 基因分型技術(shù)的決策。


基于序列的基因分型概述

基因組選擇和關(guān)聯(lián)作圖或連鎖不平衡(LD)定位技術(shù)需要大量的標(biāo)記,才能準(zhǔn)確估計與基因型相關(guān)聯(lián)的性狀。這就要求獲得基因型信息所使用的技術(shù)必須是經(jīng)濟高效,且高通量的。全基因組測序以及利用序列捕獲的靶向基因分型比較昂貴,而產(chǎn)生基因型數(shù)據(jù)的低通量方法對于常規(guī)應(yīng)用而言仍然是不實際的。在確定經(jīng)濟型測序的目標(biāo)下,基于測序的基因分型方法,如基于酶切的簡化DNA測序1 (RADseq)和genotyping-by-sequencing (GBS) 2已不斷發(fā)展,它們在科研和日常應(yīng)用中的潛力被不斷引用。


基于測序的方法依賴于對多個樣品添加條形碼,并降低基因分型的成本。這種技術(shù)利用限制性內(nèi)切酶來消化目標(biāo)限制位點和低拷貝基因組區(qū)域,以降低基因組復(fù)雜度。這樣就能夠避免帶有重復(fù)序列的區(qū)域,它們?nèi)菀桩a(chǎn)生模糊或假的SNP,且增加測序成本。利用測序而獲得的基因型數(shù)據(jù)在質(zhì)量和數(shù)量上大有不同,這高度依賴于生物體的基因組大小和結(jié)構(gòu)以及評估的群體。基因組結(jié)構(gòu)的復(fù)雜度,如倍性水平、GC含量和重復(fù)序列、待研究群體的遺傳多樣性,以及群體內(nèi)的交配系統(tǒng),都對測序技術(shù)準(zhǔn)確輕松收集基因型數(shù)據(jù)的成本、準(zhǔn)確性和效率有著直接的影響。對于那些標(biāo)記探索落后或不完善的物種而言,基于測序的基因分型技術(shù)很有用。GBS和RADseq都能用于至少96個樣品,而不需要訪問參考數(shù)據(jù)庫或之前發(fā)現(xiàn)的標(biāo)記。這種技術(shù)還特別適合篩查數(shù)千個多態(tài)性,以了解遺傳變異的后果,之前人們依賴極其少量的標(biāo)記,如微衛(wèi)星和擴增片段長度多態(tài)性(AFLP)?;跍y序的基因分型技術(shù)已被用于標(biāo)記的發(fā)現(xiàn)。雜志上已經(jīng)發(fā)表了在多個物種上開展的各種實驗的結(jié)果,如大麥、玉米、小麥、牛和鱒魚等。在常規(guī)的基因分型中使用基于測序的基因分型技術(shù)依然遙遙無期,這有幾方面的原因,本文中也列出了其中一些?!禡olecular Ecology》雜志關(guān)于genotyping-by-sequencing技術(shù)的特刊3也總結(jié)指出,新的genotyping-by-sequencing技術(shù)仍然是不完善的,無法在不同的植物和動物中充分地擴展。


基于序列的基因分型中的關(guān)鍵實驗因素

所有的新一代測序平臺都有序列堿基數(shù)量的限制,它們由每個測序運行產(chǎn)出。這個有限的產(chǎn)出能力意味著基于測序的基因分型運行必須平衡四個關(guān)鍵參數(shù):樣品多重分析的水平、基因組覆蓋度、序列覆蓋度以及每個樣品的成本。樣品的多重分析很關(guān)鍵,因為測序儀的有限產(chǎn)出能力必須由運行中包括的所有樣品來共享。更多樣品意味著每個樣品的測序堿基更少。

基因組覆蓋度也很重要,因為它決定了被分析基因組的百分比,因此,也決定了基因組中可獲取的標(biāo)記數(shù)量。更高的基因組覆蓋度是以犧牲其他參數(shù)中的一個為代價而實現(xiàn)的,因為它需要更多的測序儀產(chǎn)出能力。

blob.png

序列覆蓋度(或序列“深度”)決定了數(shù)據(jù)集中每個序列的平均讀取數(shù)量。實際上,一些序列頻繁被讀取,而一些較少被讀取,或根本沒有。序列覆蓋度影響數(shù)據(jù)中缺口的百分比以及基因型準(zhǔn)確性。準(zhǔn)確的基因型檢出通常需要每個SNP上30倍或更高的覆蓋度。增加序列覆蓋度也迫使在其他地方妥協(xié),以平衡測序儀能力的使用。當(dāng)然,樣品多重分析、基因組覆蓋度和序列覆蓋度都能通過在測序儀上投入更多運行來改善,但這會使成本迅速增加。本技術(shù)指南討論了每種新型測序技術(shù)中實驗方法的影響、基因組復(fù)雜度對標(biāo)記數(shù)量的影響,以及應(yīng)用范圍。實驗方法的變化可明顯增加任何基因分型項目的成本,對于30,000個標(biāo)記的項目,可能增加五倍 。


應(yīng)用

基因組覆蓋度高度依賴于基因分型技術(shù)和方法的選擇,而這個選擇取決于感興趣的應(yīng)用。每種方法提供了不同水平的植物或動物基因組覆蓋度。這影響了可獲取的標(biāo)記數(shù)量,也決定了哪種方法適合目標(biāo)應(yīng)用。這些應(yīng)用的范圍從群體基因組掃描到確定系統(tǒng)發(fā)育。圖2顯示了不同的基于測序和芯片的基因分型方法如何定位到各種應(yīng)用,以及與覆蓋基因組相關(guān)的相對成本。每種基于測序的方法所覆蓋的標(biāo)記數(shù)量取決于實驗參數(shù),如限制性內(nèi)切酶的類型、DNA的質(zhì)量和數(shù)量以及分析技術(shù)。每個應(yīng)用的標(biāo)記數(shù)量如圖2所示,是被測序的基因組部分的函數(shù)。準(zhǔn)確基因分型所需的標(biāo)記數(shù)量是基因組水平的連鎖不平衡的數(shù)量、系譜中捕獲的重組事件、各組之間分歧的函數(shù)。4通過改變分析中的限制性內(nèi)切酶,以增加標(biāo)簽數(shù)量,可提高基因組覆蓋度。然而,正如上文指出的,提高基因組覆蓋度是以更低的樣品多重分析、更低的序列覆蓋度或每個樣品的更高成本為代價的。

blob.png

群體基因組掃描和測序驗證:芯片和基于測序的基因分型技術(shù)已經(jīng)用于開展群體掃描和驗證那些利用新一代測序發(fā)現(xiàn)的標(biāo)記?;跍y序的基因分型策略容易檢出假的SNP,因為測序技術(shù)存在固有誤差,拷貝數(shù)變異無法定位到參考基因組,或來自旁系同源或同源基因。通過更深度的序列覆蓋,假的SNP可排除,但這會增加每個樣品的成本,通過使用雙單倍體或高質(zhì)量的參考序列,也可避免這一問題,但這些會導(dǎo)致更復(fù)雜的信息學(xué)分析,而嚴格的過濾條件會丟棄大部分的測序數(shù)據(jù)。通過運行群體內(nèi)的大量樣品來驗證標(biāo)記,可鑒定出信息量大且重復(fù)的標(biāo)記。高密度的Axiom?芯片已成功應(yīng)用于驗證測序發(fā)現(xiàn)和排除假的SNP,這些SNP是許多物種測序錯誤的結(jié)果,包括雞5和三文魚6。芯片帶來了一種簡單的方法,可以評估不同群體中的數(shù)百萬個標(biāo)記,并驗證那些通過不同測序技術(shù)(如RADseq、RNAseq和重測序)發(fā)現(xiàn)的標(biāo)記。


關(guān)聯(lián)作圖、基因組選擇和拷貝數(shù)應(yīng)用:關(guān)聯(lián)作圖(AM)技術(shù)使用大量的多態(tài)性標(biāo)記來克服QTL定位中的挑戰(zhàn)和限制。關(guān)聯(lián)作圖依賴連鎖不平衡和現(xiàn)有基因庫中存在的重組,來開展隨機交配群體、各系或種質(zhì)間的表型-基因型關(guān)聯(lián)。8 在關(guān)聯(lián)作圖研究中,更多的標(biāo)記增加了找到或定位致病變異的可能性,9 因此標(biāo)記越多越好。盡管關(guān)聯(lián)作圖可通過基于測序的基因分型方法來完成,但芯片通常能更經(jīng)濟高效地對高密度的標(biāo)記進行基因分型,且有著更好的數(shù)據(jù)質(zhì)量和完整性。


密集的標(biāo)記也可用在基因組選擇中,其中在基因分型和表型檢測中同時估計標(biāo)記的影響,或訓(xùn)練群體,然后用來預(yù)測選擇候選物的價值。基因組選擇的準(zhǔn)確性隨標(biāo)記密度的增加而增加。據(jù)估計,50,000個標(biāo)記已足以準(zhǔn)確預(yù)測這些關(guān)系。10 拷貝數(shù)變異檢測實現(xiàn)了復(fù)雜性狀中可遺傳變異的研究和鑒定。


系譜和數(shù)量性狀位點(QTL)作圖:與關(guān)聯(lián)作圖不同,QTL作圖查看多個基因?qū)?shù)量性狀的影響,如三文魚控制對海虱的抗性或魚卵大小的QTL。QTL鑒定是基于雙親雜交,需要通過精細作圖鑒定染色體區(qū)域的單個基因,因此需要大量的雜交來產(chǎn)生足夠數(shù)量的減數(shù)分裂事件。系譜基因分型利用QTL檢測中的育種材料,它們覆蓋多代,通過多次雜交與系譜中的共同祖先相關(guān)聯(lián)。這實現(xiàn)了育種項目中存在的大部分等位基因的鑒定和使用。


系統(tǒng)發(fā)育和群體定位:在各個研究機構(gòu)維護的種質(zhì)和育種者維護的種質(zhì)中,群體結(jié)構(gòu)可能有所不同。不同的群體結(jié)構(gòu)需要不同的全基因組關(guān)聯(lián)研究(GWAS)方法。通過構(gòu)建遺傳或連鎖圖譜來調(diào)查群體結(jié)構(gòu)和開展系統(tǒng)發(fā)育分析,可提供基因組重組率的信息。了解群體結(jié)構(gòu)也有助于選擇適當(dāng)?shù)臉?biāo)記和密度。通過研究很小一部分基因組中的標(biāo)記,可完成群體分析。


工作流程:基于芯片的技術(shù)和基于測序的基因分型技術(shù)的工作流程比較如圖3所示。基于測序的基因分型技術(shù)依賴條形碼技術(shù)對樣品進行多重分析(例如,96個樣品在單個通道中測序?qū)⑿枰?6個樣品條形碼)。文庫制備需要選擇適合該物種和所需標(biāo)記數(shù)量的限制性內(nèi)切酶。此過程需要優(yōu)化,以避免引物二聚體等問題,這些可能增加測序的費用。在文庫制備之后,真正的測序約需11個小時至11天不等,這取決于儀器的能力和測序基因組的百分比。更高的樣品多重分析也并非不可能,但正如之前提到的,必須平衡基因組大小,測序基因組的百分比以及單個通道中的序列覆蓋度。測序之后,數(shù)據(jù)經(jīng)過過濾,條形碼被解復(fù)用,以提取每個樣品的標(biāo)記。使用任一基因分型技術(shù)的重要考慮因素是計算設(shè)備和分析流程。分析流程需要根據(jù)感興趣的物種、實驗方法、待研究的群體和技術(shù)本身來定制。

James Hutton研究所近期發(fā)表的一篇文章11得出結(jié)論,利用GBS來研究大麥的一個重要結(jié)果是,與目前實驗室中使用的多重SNP分析技術(shù)相比,GBS數(shù)據(jù)在處理和隨后的分析上更具挑戰(zhàn)性。采用基于測序的基因分型技術(shù)存在諸多挑戰(zhàn),包括計算設(shè)備,維護定制分析流程的生物信息學(xué)專家,開展比對和分析的軟件,以及提取有用的基因分型數(shù)據(jù)所需的時間。測序技術(shù)的數(shù)據(jù)分析通常在“云端”開展,以盡量減少本地數(shù)據(jù)存儲和計算要求。變異檢出往往通過定制的軟件來開展,這些軟件檢出各種基因型。每個存儲技術(shù)都具有與數(shù)據(jù)轉(zhuǎn)移、存儲和檢索相關(guān)的成本,這會影響基因分型項目的成本。

相比之下,基于芯片的基因分型技術(shù)能輕松地利用臺式工作站,對每個樣品的數(shù)百萬個數(shù)據(jù)點進行基因分型,在降低設(shè)備費用的同時提高操作效率。這種芯片法基因分型的簡約、易用讓芯片可在各種場景和環(huán)境下使用,對常規(guī)育種應(yīng)用而言尤其有吸引力,因為大量樣品處理和周轉(zhuǎn)時間都很重要。

文庫制備中的DNA質(zhì)量和數(shù)量:基于測序的基因分型技術(shù)對DNA濃度和DNA質(zhì)量的要求仍然是實際應(yīng)用中的嚴重挑戰(zhàn)之一。DNA測序需要幾微克(μg)已純化的高分子量基因組DNA,且無污染和共生體。細菌污染可能影響測序,因為DNA材料的隨機擴增意味著細

菌DNA會與待分型的生物樣品一起被測序。

標(biāo)記的數(shù)量和類型:芯片技術(shù)與測序技術(shù)的最大差異在于芯片靶定特定的基因組區(qū)域或特定SNP的能力,如圖4所示?;谛酒募夹g(shù)能夠靶定特定染色體區(qū)域內(nèi)任何數(shù)量的標(biāo)記,其設(shè)計策略采用在基因組中均勻間隔的標(biāo)記,如有必要,采用基因組特定區(qū)域內(nèi)更高間隔的標(biāo)記。這種靈活性讓芯片可應(yīng)用于GWAS、12 QTL作圖、關(guān)聯(lián)作圖和基因組選擇,并具有一定量的確定偏差。通過在多個品種上開展SNP研究,可降低確定偏差。

blob.png

表1:利用芯片和基于測序的基因分型技術(shù)對生物樣品進行基因分型所需的DNA量?;跍y序的基因分型技術(shù)所需的濃度是芯片的2倍至30倍。

blob.png

基于測序的基因分型技術(shù)依賴DNA庫的隨機抽樣,而標(biāo)記的數(shù)量與待測序區(qū)域的數(shù)量和大小成正比。當(dāng)待研究群體的限制性位點保守時,基因組區(qū)域預(yù)計沒有偏差。因此,樣品間的標(biāo)記不保守,并且沒有兩個樣品能提供相同的一組標(biāo)記。這導(dǎo)致數(shù)據(jù)丟失,并需要

復(fù)雜的信息學(xué)通過推算來恢復(fù)丟失的數(shù)據(jù)。樣品間不保守的標(biāo)記必須通過參考基因組來推算,或利用覆蓋度非常高的測序(18倍或更高)通過相關(guān)品系的單倍型來推算。


選擇測序方法的考慮因素

對于上面提到的任何應(yīng)用,在決定采用哪種方法之前,必須考慮到影響基因分型的各種因素。

    雜合子檢出錯誤:基于測序的基因分型技術(shù),尤其是GBS,依賴低覆蓋度來降低成本,并獲得大量標(biāo)記,這些標(biāo)記可用于關(guān)聯(lián)作圖。這種實驗方法的缺點在于雜合子的檢出明顯過低,這影響了基因型準(zhǔn)確性。GBS檢出不足50%的雜合子。一項關(guān)于DNA測序所需覆蓋度的研究14預(yù)測,對于每個雜合二倍體,檢測99.75%位點上的兩個等位基因至少一次,需要13.5倍的深度。而檢測每個等位基因至少兩次,將需要18倍的深度。增加測序覆蓋度導(dǎo)致每個樣品的成本更高,并使得測序比芯片更為昂貴。關(guān)于葡萄的研究表明,以5.7倍的平均深度基因分型時,30-50%的雜合子未檢出。15 而芯片上雜合子的檢出準(zhǔn)確性是由芯片設(shè)計決定的,這是高度可預(yù)測的,使得基因型檢出準(zhǔn)確性接近100%。芯片所使用的進一步設(shè)計方法能夠?qū)C含量高于60%的基因組區(qū)域進行基因分型。

    基因組覆蓋度:任何技術(shù)所帶來的標(biāo)記數(shù)量有望實現(xiàn)基因組的均一覆蓋?;跍y序的基因分型技術(shù)表現(xiàn)出數(shù)據(jù)丟失,這導(dǎo)致基因組的不均一覆蓋。丟失的數(shù)據(jù)是實驗條件和基因組結(jié)構(gòu)的函數(shù)所造成,源于文庫復(fù)雜度(即獨特序列標(biāo)簽的數(shù)量)和文庫的序列覆蓋度的組合。丟失數(shù)據(jù)的量與文庫制備的多重水平以及RE消化所使用的酶直接相關(guān)。測序技術(shù)中限制性內(nèi)切酶的選擇影響了等位基因信號丟失,從而影響群體遺傳學(xué)的統(tǒng)計數(shù)據(jù)。稀有標(biāo)記需要切割不頻繁的酶,隨后產(chǎn)生較少的標(biāo)記。若使用頻繁切割的酶,會產(chǎn)生較多的標(biāo)記,但覆蓋度明顯降低,導(dǎo)致大量的數(shù)據(jù)丟失。


所有代表性降低的測序技術(shù)依賴基因組復(fù)雜度降低,從而降低成本并增加通量。復(fù)雜度降低的缺點在于所獲得的基因型數(shù)據(jù)有著明顯的丟失數(shù)據(jù)。16 基因型數(shù)據(jù)可能丟失,因為基因組結(jié)構(gòu)中的內(nèi)在差異,如存在-缺失差異、多態(tài)性限制位點的變異,以及差異甲基化,這影響代表性降低的測序技術(shù)中所使用的甲基化敏感的酶。丟失的數(shù)據(jù)對QTL作圖很重要,其中親本系的基因型數(shù)據(jù)質(zhì)量對作圖群體的基因型檢出至關(guān)重要。親本系需要以非常高的覆蓋度測序。



圖5:說明了序列覆蓋度與丟失數(shù)據(jù)之間的關(guān)系,這項結(jié)果是由近期一篇論文發(fā)表的,它比較了不同平臺上基于測序的基因分型。17 此研究表明,在10倍覆蓋度下,可獲得1,000個標(biāo)記,且50%的數(shù)據(jù)丟失,而低覆蓋度下的標(biāo)記數(shù)量增加至30,000個時,90%的數(shù)據(jù)丟失。

blob.png



基因型數(shù)據(jù)的預(yù)期量和實際量可能差異巨大。近期一項使用GBS的玉米研究18表明,基因組位置分布的傾斜覆蓋和不成比例的區(qū)域不代表最初預(yù)計的信息。這限制了測序技術(shù)的范圍和應(yīng)用,被認為無法用于關(guān)聯(lián)研究的精細作圖。大多數(shù)位點的基因型數(shù)據(jù)只能通過大幅增加read深度來實現(xiàn),而這會影響測序成本。


丟失的數(shù)據(jù)可利用數(shù)據(jù)推算技術(shù)來恢復(fù),也就是將數(shù)據(jù)與參考基因組比對,這需要大量的投資、先進的分析,以及復(fù)雜的流程,能過濾、排序并比對序列數(shù)據(jù)。缺乏簡單易用且統(tǒng)一的信息學(xué)流程仍然是在常規(guī)應(yīng)用中采用基于測序的基因分型技術(shù)的第二大障礙。推算特別適合親緣關(guān)系相近的個體,但對于高度多樣化的樣品,丟失的數(shù)據(jù)可替換為近鄰的等位基因。19 當(dāng)丟失數(shù)據(jù)的比例高時,基于測序的基因分型技術(shù)也會丟失低頻率的等位基因。替代方案是追求更高深度的測序,這會導(dǎo)致每個樣品的成本更高。

LD和多態(tài)性頻率:對于收集基因型數(shù)據(jù)的群體而言,它的基因組多樣性和交配系統(tǒng)對測序成本有很大的影響。從一個較窄的遺傳基礎(chǔ)衍生而來的群體表現(xiàn)出較少的多態(tài)性,需要更多的測序,并增加總成本。四倍體棉花等物種便是如此,其每1,000-1,500個堿基表現(xiàn)出一個多態(tài)性。物種內(nèi)的LD衰減也決定了多個群體的關(guān)聯(lián)作圖所需的標(biāo)記數(shù)量。圖6顯示了LD衰減對標(biāo)記分辨率的影響。對LD衰減高的物種而言,標(biāo)記密度的低分辨率將導(dǎo)致基因組的覆蓋度不足。水產(chǎn)養(yǎng)殖物種(如鱒魚)和植物(包括玉米、葡萄和甜菜)表現(xiàn)出低的LD,在關(guān)聯(lián)分析時需要大量的片段。近期一項關(guān)于鱒魚的全基因組關(guān)聯(lián)研究20使用了基于測序的基因分型技術(shù),并得出結(jié)論,LD的快速衰減需要更高水平的標(biāo)記密度,才能高效地開展全基因組關(guān)聯(lián)研究。

拷貝數(shù)應(yīng)用:基于芯片和測序的基因分型技術(shù)可被用來開展拷貝數(shù)研究,以鑒定復(fù)雜性狀的遺傳變異。這兩種技術(shù)都能檢測拷貝數(shù)獲得。但基于測序的基因分型技術(shù)在低覆蓋度下難以鑒定拷貝數(shù)丟失,因為片段丟失顯示為低覆蓋度的標(biāo)記。21 更高覆蓋度將實現(xiàn)CNV丟失的檢測,但成本有望增加40-50%。

基因組復(fù)雜度:多倍性是植物和某些動物的更復(fù)雜屬性之一。60-70%的被子植物是多倍體,其倍性水平從葡萄籽的四倍體到草莓的八倍體,而甘蔗更為復(fù)雜,其倍性水平從12-16倍不等。多倍體物種表現(xiàn)出基因組復(fù)制。多倍體的挑戰(zhàn)如下:(i) 多倍體物種需要更高的序列覆蓋度,才能高效覆蓋更大的基因組,而這增加了測序成本。(ii) 基因組組裝和作圖算法很復(fù)雜,容易出錯,特別是在組裝旁系同源/直系同源區(qū)域時。對于多倍體且雜合的物種,每個指定位點的數(shù)據(jù)推算都需要復(fù)雜的分析流程,而這不能用于常規(guī)的育種應(yīng)用。22 此外,更深度的測序增加了總成本。測定基因組中每個位點的等位基因劑量信息對基因組選擇模式很重要。在使用芯片對多倍體物種進行基因分型時,來自亞基因組的信號導(dǎo)致聚類壓縮。多倍體物種也表現(xiàn)出不同水平的倍性,因為干擾突變導(dǎo)致復(fù)雜度降低。常規(guī)的育種應(yīng)用必須有一個分析流程,能自動聚類并分配基因型,以滿足嚴格的育種時限要求。Axiom? GT1算法用貝葉斯統(tǒng)計來準(zhǔn)確分配基因型并讓多倍體基因組的數(shù)據(jù)聚類。圖7顯示了一個例子。自動流程讓人們能夠輕松準(zhǔn)確地對數(shù)千個樣品的數(shù)千個標(biāo)記進行基因分型。

為您的基因分型項目選擇適當(dāng)方案的指南:鑒于芯片技術(shù)和測序技術(shù)的進步,科學(xué)家們需要認識到使用測序技術(shù)的挑戰(zhàn),以及使用測序和芯片技術(shù)的偏向。下列問題可幫助您選擇適當(dāng)?shù)募夹g(shù),應(yīng)用在科研或基因組育種項目所考慮的物種上:

n 獲取基因型數(shù)據(jù)所使用的分析是否與所考慮物種的基因組結(jié)構(gòu)兼容,它是否能帶來足夠量的可靠標(biāo)記?

n 是否有需要靶定特定染色體區(qū)域,需要采用何種標(biāo)記策略以覆蓋整個基因組?

n 所考慮物種的潛在LD結(jié)構(gòu)如何?

n 此物種是不是多倍體,倍性水平如何?

n 將此技術(shù)引入科研或育種項目需要哪種信息學(xué)流程和專業(yè)知識?

n 需要多少個小時才能檢出基因型并聚類數(shù)據(jù)?

n 所考慮的群體是近交群體,還是多樣化的無關(guān)個體,預(yù)計雜合水平如何?

n 需要對多少個樣品進行基因分型,周轉(zhuǎn)時間或出結(jié)果的時間是否有限制?

n 需要何種深度的序列覆蓋,才能準(zhǔn)確檢出基因型?

n 數(shù)據(jù)缺口有什么影響,您將如何恢復(fù)丟失的基因型?

n 考慮到丟失數(shù)據(jù)和生物信息學(xué)流程和分析所需的資源,分析的成本如何?

n 技術(shù)的通量、周轉(zhuǎn)時間、分析的可靠性以及技術(shù)所使用的儀器如何?

n 育種項目可接受的偏差量如何,是否有辦法繞過偏差?

n 需要將多少種不同的技術(shù)或分析整合到科研或育種項目中,進行有效驗證、標(biāo)記性狀或常規(guī)使用?


芯片技術(shù)不斷發(fā)展,形成Axiom? 384HT的格式。這個能以非常經(jīng)濟的價格點同時處理384個樣品的創(chuàng)新讓此技術(shù)從科研走向主流的商業(yè)化農(nóng)業(yè)基因組學(xué)。在優(yōu)先考慮周轉(zhuǎn)時間、易用性和數(shù)據(jù)質(zhì)量的應(yīng)用中,芯片仍然是理想技術(shù)。

基于芯片的技術(shù)在單一平臺上合并了多個基因分型應(yīng)用,提供了靈活性和經(jīng)濟性。分析和信息學(xué)分析流程的創(chuàng)新讓所有感興趣的相關(guān)標(biāo)記能夠不受限制地基因分型,其結(jié)果可通過簡單的流程在幾小時內(nèi)得到。Axiom?基因分型解決方案,來自Affymetrix的芯片

技術(shù)演化,為全基因組分析到常規(guī)篩查的應(yīng)用提供了完整的解決方案,具有高準(zhǔn)確性和重復(fù)性、簡化的流程和低成本 。

blob.png


基于測序的基因分型技術(shù)的挑戰(zhàn)總結(jié)在表2。

表2:表2比較了基于測序的基因分型技術(shù)(如RADseq和GBS)與Axiom? Genotyping Arrays的特點。新技術(shù)由于忽視了實際實驗條件和基因組復(fù)雜度而呈現(xiàn)的較低成本, 卻往往被宣傳為替代芯片技術(shù)的理由。


blob.png

Affymetrix的農(nóng)業(yè)基因組學(xué)基因分型方案為育種人員和研究人員提供了一種強大而經(jīng)濟的工具,可鑒定、驗證和篩查植物或動物中復(fù)雜的遺傳性狀,實現(xiàn)更快速、更精確的育種。Axiom?基因分型一開始是從SNP文庫資源中選擇標(biāo)記內(nèi)容,接著設(shè)計SNP芯片,最后用芯片來鑒定樣品的基因型。這為育種人員和研究人員提供了一種功能性的基因分型工具,讓其應(yīng)用在標(biāo)記-性狀關(guān)聯(lián)、全基因組關(guān)聯(lián)研究(GWAS)、數(shù)量性狀位點(QTL)分析和基因組選擇項目中。


鑒于genotyping-by-sequencing技術(shù)在數(shù)據(jù)管理、計算需求上的挑戰(zhàn),且定制信息學(xué)流程需要根據(jù)每個物種和樣品群體來定制,芯片在數(shù)據(jù)質(zhì)量、完整性、分析和常規(guī)育種的應(yīng)用上是很簡單的技術(shù)。


總的來說,適用于動物和植物基因分型的Axiom?基因分型解決方案讓人們能夠為具有商業(yè)價值的物種定制芯片上的基因分型內(nèi)容。Axiom基因分型解決方案包括物種特異和定制的芯片,其經(jīng)過驗證的基因組內(nèi)容來自Axiom?基因組數(shù)據(jù)庫,以及完整的試劑盒、數(shù)據(jù)分析工具,和一個利用GeneTitan?多通道(MC)儀器的全自動流程。


References and publications

1 Baird N. A., et al. Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS ONE 3:e3376 (2008). doi:10.1371/journal.pone.0003376

2 Elshire R. J., et al. A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE 6:e19379 (2011). doi:10.1371/journal.pone.0019379

3 Narum S. R., et al. Genotyping-by-sequencing in ecological and conservation genomics. Molecular Ecology 22: 2841?2847 (2013). doi:10.1111/mec.12350

4 Peterson B. K., et al. Double digest RADseq: an inexpensive method for de novo SNP discovery and genotyping in model and non-model species. PLoS ONE 7(5):e37135 (2012).

doi:10.1371/journal.pone.0037135

5 Kranis A., et al. Development of a high density 600K SNP genotyping array for chicken. BMC Genomics 14:59 (2013). doi:10.1186/1471-2164-14-59

6 Houston R. D., et al. Development and validation of a high density SNP genotyping array for Atlantic salmon (Salmo salar). BMC Genomics 15:90 (2014). doi:10.1186/1471-

2164-15-90

7 Affymetrix application note Mitigating sequencing errors, monomorphs, and poor performing markers during de novo SNP selection for genotyping applications (2013) P/N

DNA02261 Rev. 1

8 Ersoz E. S., Yu J., Buckler E. S. Applications of linkage disequilibrium and association mapping in crop plants, in Genomics-Assisted Crop Improvement: vol 1: Genomics

Approaches and Platforms, eds. Varshney R. K., Tuberosa R. Springer, pp. 97-119 (2007). doi:10.1007/978-1-4020-6295-7_5

9 Poland J. A., et al. Genotyping-by-sequencing for plant breeding and genetics. The Plant Genome 5(3):92?102 (2012). doi:10.3835/plantgenome2012.05.0005

10 Meuwissen T., et al. Accelerating improvement of livestock with genomic selection. Annual Review of Animal Biosciences 1:221-237 (2013). doi:10.1146/annurevanimal-

031412?103705

11 Hui L., et al. An evaluation of genotyping by sequencing (GBS) to map the Breviaristatum-e (ari-e) locus in cultivated barley. BMC Genomics 15:104 (2014). doi:10.1186/1471-

2164-15-104

12 Liu S., et al. Development of the catfish 250K SNP array for genome-wide association studies. BMC Research Notes 7:135 (2014). doi:10.1186/1756-0500-7-135

13 Cavangh C. R., et al. Genome-wide comparative diversity uncovers multiple targets of selection for improvement in hexaploid wheat landraces and cultivars. 110(20):8057–8062.

doi:10.1073/pnas.1217133110

14 Wendl M. C., et al. Aspects of coverage in medical DNA sequencing. BMC Bioinformatics 9:239 (2008). doi: 10.1186/1471-2105-9-239

15 Hyma K. E., GBS Usage Cases: Non-model Organisms. (2013). http://cbsu.tc.cornell.edu/lab/doc/GBS_nonmodel_Sept_2013.pdf

16 Davey J. W., et al. Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nature Reviews Genetics 12(7):499–510 (2011). doi:10.1038/

nrg3012

17 Mascher M., et al. Application of genotyping-by-sequencing on semiconductor sequencing platforms: a comparison of genetic and reference-based marker ordering in barley.

PLoS ONE 8(10):e76925 (2013). doi:10.1371/journal.pone.0076925

18 Beissinger T. M., et al. Marker density and read depth for genotyping populations using genotyping-by-sequencing. Genetics 193(4):1073–1081 (2013). doi:10.1534/

genetics.112.147710

19 Huang X., et al. Genome-wide association studies of 14 agronomic traits in rice landraces. Nature Genetics 42(11):961?967 (2010). doi:10.1038/ng.695

20 Rexroad C. E., et al. Estimates of linkage disequilibrium and effective population size in rainbow trout. BMC Genetics 10:83 (2009). doi:10.1186/1471-2156-10-83

21 Donato MD et. al. Genotyping-by-sequencing (GBS): a novel, efficient and cost-effective genotyping method for cattle using next- generation sequencing. PLoS ONE 8(5):

e62137. doi:10.1371/journal.pone.0062137.

22 Brummer, et al. Applied genetics and genomics in alfalfa breeding. Agronomy 2:40-61 (2012). doi:10.3390/agronomy2010040


來自Affymetrix的農(nóng)業(yè)基因組學(xué)解決方案為育種者和研究人員提供了一系列強大而靈活的基因分型工具,

可經(jīng)濟高效地鑒定、驗證并篩查植物和動物中的復(fù)雜遺傳性狀。

來自Affymetrix的農(nóng)業(yè)基因組學(xué)解決方案為育種者和研究人員提供了一系列強大而靈活的基因分型工具,

可經(jīng)濟高效地鑒定、驗證并篩查植物和動物中的復(fù)雜遺傳性狀。

來自Affymetrix的農(nóng)業(yè)基因組學(xué)解決方

收 藏