植物顏色分析儀——WinCAM
日期:2017-03-27 10:09:50

主要功能

采用開放式架構(gòu)體系,精確研究物品在色彩方面的面積分布及其相關(guān)參數(shù);運(yùn)用各種圖形捕捉設(shè)備獲取高質(zhì)量葉片圖形,運(yùn)用專業(yè)軟件分析計算物品顏色分布等相關(guān)參數(shù);在地表覆蓋研究中:采用數(shù)碼相機(jī)攝取草地冠層的圖像,用專用軟件計算綠色植物、土地、病變植物或其它物體所占比例。

NDVI(歸一化植被指數(shù))=(NIR-R)/(NIR+R),或兩個波段反射率的計算,和植物的蒸騰作用、太陽光的截取、光合作用以及地表凈初級生產(chǎn)力等密切相關(guān)。

·   NDVI 的應(yīng)用:檢測植被生長狀態(tài)、植被覆蓋度和消除部分輻射誤差等;

·   -1<=NDVI<=1,負(fù)值表示地面覆蓋為云、水、雪等,對可見光高反射;0 表示有巖石或裸土等,NIR 和 R 近似相等;正值,表示有植被覆蓋,且隨覆蓋度增大而增大;

·   NDVI 的局限性表現(xiàn)在,用非線性拉伸的方式增強(qiáng)了 NIR 和 R 的反射率的對比度。對于同一幅圖像,分別求 RVI 和 NDVI 時會發(fā)現(xiàn),RVI 值增加的速度高于 NDVI 增加速度,即 NDVI 對高植被區(qū)具有較低的靈敏度;

·   NDVI 能反映出植物冠層的背景影響,如土壤、潮濕地面、學(xué)、枯葉、粗超度等,且與植被覆蓋有關(guān)。

主要功能.png


測量參數(shù)

基本測量數(shù)據(jù):分析區(qū)域面積,分析對象長度、寬度、面積,顏色分類等。

個體測量參數(shù):面積、長度、寬度、周長、性狀因子,顏色分類分析。

顏色類參數(shù):NDVI,綠色度(Greenness),用戶自定義顏色指數(shù)、物體輪廓信息測量。


應(yīng)用領(lǐng)域

廣泛運(yùn)用于農(nóng)藝和林學(xué)等形態(tài)學(xué)、病理學(xué)研究領(lǐng)域。在地表覆蓋研究中,可應(yīng)用于草地、花卉、蔬菜,植物幼苗生長初期(First Growth)冠層覆蓋度的研究,或果實生長初期的研究。  


主要技術(shù)參數(shù)

圖像獲取設(shè)備參數(shù)

數(shù)碼相機(jī):1200 萬像素,內(nèi)置鏡頭,獲取適合 NDVI 分析的 jpeg 圖像,紅色通道包含的近紅外光譜數(shù)據(jù),而藍(lán)色包含可見光數(shù)據(jù),內(nèi)置存儲,重量小于 200 g。(注:不能獲取傳統(tǒng) RGB 彩色圖像)

分析軟件參數(shù)

截圖01.png


選購指南:

圖像撲捉系統(tǒng):經(jīng)廠家調(diào)試的數(shù)碼相機(jī)圖像采集設(shè)備

植物顏色分析軟件:標(biāo)準(zhǔn)版 /專業(yè)版 WinCAM 分析軟件。

 

產(chǎn)地:加拿大 Regent


參考文獻(xiàn)

原始數(shù)據(jù)來源:Google Scholar

Gazzano C, Favero-Longo SE, Iacomussi P, Piervittori R (2013) Biocidal effect of lichen secondary metabolites against rock-dwelling microcolonial fungi, cyanobacteria and green algae. International Biodeterioration & Biodegradation 84: 300-306.

Orphanos Y, Dimitriou V, Kaselouris E, Bakarezos E, Vainos N, et al. (2013) An integrated method for material properties characterization based on pulsed laser generated surface acoustic waves. Microelectronic Engineering 112: 249-254.

Valilai OF, Houshmand M (2013) A collaborative and integrated platform to support distributed manufacturing system using a service-oriented approach based on cloud computing paradigm. Robotics and Computer-Integrated Manufacturing 29: 110-127.

Wisse M, Marot L, Eren B, Steiner R, Mathys D, et al. (2013) Laser damage thresholds of ITER mirror materials and first results on in situ laser cleaning of stainless steel mirrors. Fusion Engineering and Design 88: 388-399.

Choubey A, Mondal S, Singh R, Upadhyaya BN, Datta PK, et al. (2014) Generation of 415 W of p-polarized output power in long pulse operation of Nd:YAG laser using z-fold resonator geometry. Optics & Laser Technology 60: 41-48.

Choubey A, Vishwakarma SC, Vachhani DM, Singh R, Misra P, et al. (2014) Study and development of 22 kW peak power fiber coupled short pulse Nd:YAG laser for cleaning applications. Optics and Lasers in Engineering 62: 69-79.

Bohlin A, Mann M, Patterson BD, Dreizler A, Kliewer CJ (2015) Development of two-beam femtosecond/picosecond one-dimensional rotational coherent anti-Stokes Raman spectroscopy: Time-resolved probing of flame wall interactions. Proceedings of the Combustion Institute 35: 3723-3730.

Pezer D (2016) Efficiency of Tool Path Optimization Using Genetic Algorithm in Relation to the Optimization Achieved with the CAM Software. Procedia Engineering 149: 374-379.

Sekulska-Nalewajko J, Goc?awski J, Chojak-Ko?niewska J, Ku?niak E (2016) Automated image analysis for quantification of reactive oxygen species in plant leaves. Methods 109: 114-122.

Jansson Tomas. Estimation of reindeer lichen biomass by image analysis. SLU - Institutionen f?r skogens ekologi och sk?tsel. ISSN 1654-1898 (Umea 2012)
Sivritepe H. Ozkan, Nuray Sivritepe, Atilla Eris, Ece Turhan. 2005. The effects of NaC1 pre-treatments on salt tolerance of melons grown under long-term salinity. Scientia Horticulturae 106 (2005) 568-581.


收 藏