AgriPheno提供農(nóng)作物重要性狀功能基因定位服務(wù),結(jié)合芯片和高通量測(cè)序開(kāi)發(fā)材料間的SNP位點(diǎn),并結(jié)合高通量表型測(cè)試,提供基因型-表型-育種的整套實(shí)驗(yàn)流程設(shè)計(jì)與服務(wù)。
超高通量基因分型-分子標(biāo)記檢測(cè)平臺(tái)-Nexar
Nexar系統(tǒng)是快速、自動(dòng)化的內(nèi)聯(lián)儀器,包括Nexar?模塊化內(nèi)聯(lián)液處理與分析系統(tǒng)、Soellex?高通量PCR水浴熱循環(huán)系統(tǒng)和Araya?內(nèi)聯(lián)熒光檢測(cè)系統(tǒng),可支持樣本和陣列的高通量處理。Nexar利用創(chuàng)新的ArrayTapeTM(陣列卷帶)系列耗材,能夠在高精確度和準(zhǔn)確性下運(yùn)行。同時(shí)配備KASP Array Tape Master mix進(jìn)行競(jìng)爭(zhēng)性等位基因特異性PCR,可在廣泛的基因組DNA樣品中,對(duì)SNPs和特定位點(diǎn)上的InDels進(jìn)行精準(zhǔn)的雙等位基因分型。
Nexar系統(tǒng)模塊化內(nèi)聯(lián)平臺(tái)與Array Tape的設(shè)計(jì)實(shí)現(xiàn)了基于微孔板技術(shù)的多功能性,并且?guī)缀跸耸謩?dòng)操作和復(fù)雜的儀器操作。這種靈活的微孔板替代品可促進(jìn)整個(gè)實(shí)驗(yàn)室的內(nèi)聯(lián)和整合自動(dòng)化,并有助于終點(diǎn)PCR,qPCR和終點(diǎn)等溫DNA擴(kuò)增的應(yīng)用。每個(gè)96孔,384孔和768孔陣列都標(biāo)有獨(dú)特的條形碼標(biāo)簽,確保在處理過(guò)程中和加工后準(zhǔn)確識(shí)別各個(gè)樣品。此外,還可提供定制化的陣列,包括RNAse,DNAse和無(wú)熱原選項(xiàng)。
Nexar 系統(tǒng)
Nexar? |
Soellex? | Araya? |
? Nexar?
Nexar作為超高通量解決方案,是一套用于A(yíng)rray Tape(陣列卷帶)樣品和試劑處理的內(nèi)聯(lián)液體處理系統(tǒng)。該儀器提供分裝、密封和源板存儲(chǔ),以及可選進(jìn)程,如孵育和脫水。這一靈活的模塊配置可以處理各種應(yīng)用進(jìn)程。
? Soellex?
Soellex為三室水浴熱循環(huán)系統(tǒng),能夠在一輪運(yùn)行中同時(shí)熱循環(huán)多達(dá)三個(gè)Array Tape(陣列卷帶)線(xiàn)軸(230,400個(gè)反應(yīng)孔)或152個(gè)微孔板(384孔)。
? Araya?
Araya是內(nèi)聯(lián)熒光檢測(cè)系統(tǒng),專(zhuān)為Array Tape(陣列卷帶)的自動(dòng)掃描而設(shè)計(jì)。該系統(tǒng)可作為獨(dú)立儀器或Nexar的內(nèi)聯(lián)模塊使用。
? Intellics?
創(chuàng)新的配套軟件提供集中數(shù)據(jù)管理、儀器監(jiān)控、智能運(yùn)行優(yōu)化、Protocol生成和簡(jiǎn)化數(shù)據(jù)分析。
應(yīng)用領(lǐng)域
? 糧食作物:水稻、小麥、玉米、土豆等
? 模式植物:擬南芥、煙草、二穗短柄草等
? 蔬菜作物:生菜、番茄、甜菜、黃瓜、甘藍(lán)、菠菜等
? 模式動(dòng)物:人、小白鼠、斑馬魚(yú)等
? 常見(jiàn)牲畜:牛、豬、山羊等
應(yīng)用案例
圖1 典型的基因分型富集圖
注:每個(gè)數(shù)據(jù)點(diǎn)代表一個(gè)獨(dú)立的DNA樣本的熒光信號(hào),相同基因型的樣本會(huì)發(fā)出相似水平的熒光,因此富集在一起。
服務(wù)項(xiàng)目
? 目標(biāo)基因/性狀標(biāo)記開(kāi)發(fā) ? 全基因組標(biāo)記開(kāi)發(fā) ? 遺傳圖譜的構(gòu)建 ? 圖位克隆 ? 背景篩查 ? 蔬菜等純度檢測(cè) ? 植物身份鑒定/分群 |
服務(wù)特點(diǎn)
? 適用于超高通量自動(dòng)化檢測(cè),液體處理、孵育與檢測(cè)等流程一體化
? 反應(yīng)體系微型化,顯著降低單個(gè)數(shù)據(jù)點(diǎn)的成本
? 兼容粗提的DNA樣本,并可靈活選用化學(xué)試劑
? 專(zhuān)業(yè)化生物信息平臺(tái)及團(tuán)隊(duì)
? 大規(guī)模數(shù)據(jù)存儲(chǔ)及數(shù)據(jù)處理服務(wù)器
客戶(hù)提供
? 基因或指定區(qū)間信息
? 符合要求的供體/受體材料的DNA、葉片或種子等植物組織
服務(wù)周期
? 根據(jù)特定序列中變異位點(diǎn)設(shè)計(jì)標(biāo)記:10-25個(gè)工作日
? 根據(jù)特定供體與特定回交親本開(kāi)發(fā):10-20個(gè)工作日
? 基因初步定位:30~40個(gè)工作日
? 基因精細(xì)定位:30~40個(gè)工作日
? 已克隆基因序列開(kāi)發(fā): 15-30個(gè)工作日
? 全基因組標(biāo)記開(kāi)發(fā):4-6個(gè)月
? 未克隆已定位基因標(biāo)記開(kāi)發(fā):根據(jù)性狀復(fù)雜程度確定
視頻鏈接:https://v.youku.com/v_show/id_XNDAzMDE5NjU2OA==.html?spm=a2h3j.8428770.3416059.1
參考文獻(xiàn):
2017
Lennon J R , Matthew K , Major G , et al. Identification of Teosinte Alleles for Resistance to Southern Leaf Blight in Near Isogenic Maize Lines[J]. Crop Science, 2017, 57(4):1973-.
Zhang J , Wen Z , Li W , et al. Genome-wide association study for soybean cyst nematode resistance in Chinese elite soybean cultivars[J]. Molecular Breeding, 2017, 37(5):60.
King Z R , Childs S P , Harris D K , et al. A new soybean rust resistance allele from PI 423972 at theRpp4locus[J]. Molecular Breeding, 2017, 37(5):62.
2016
Patil G , Do T , Vuong T D , et al. Genomic-assisted haplotype analysis and the development of high-throughput SNP markers for salinity tolerance in soybean[J]. Scientific Reports, 2016, 6(19199).
Dilip C , Sudakshina P , Mathew P , et al. Development of a Rapid Point-of-Use DNA Test for the Screening of Genuity? Roundup Ready 2 Yield? Soybean in Seed Samples[J]. BioMed Research International, 2016, 2016:1-12.
Jamann T M , Luo X , Morales L , et al. A remorin gene is implicated in quantitative disease resistance in maize[J]. Theoretical & Applied Genetics, 2016, 129(3):591-602.
Jamann T M , Luo X , Morales L , et al. A remorin gene is implicated in quantitative disease resistance in maize[J]. Theoretical & Applied Genetics, 2016, 129(3):591-602.
King, Z. R., D. K. Harris, E. D. Wood, J. W. Buck, H. R. Boerma, and Z. Li. 2016. Registration of Four Near-Isogenic Soybean Lines of G00-3213 for Resistance to Asian Soybean Rust. J. Plant. Reg. 10:189-194. doi:10.3198/jpr2015.04.0027crg
Jiafa C , Cristian Z , Noemi O , et al. The Development of Quality Control Genotyping Approaches: A Case Study Using Elite Maize Lines[J]. PLOS ONE, 2016, 11(6):e0157236-.
Yao N , Lee C R , Semagn K , et al. QTL Mapping in Three Rice Populations Uncovers Major Genomic Regions Associated with African Rice Gall Midge Resistance[J]. Plos One, 2016, 11(8):e0160749.
Zimmermann J , Musyoki M K , Cadisch G , et al. Biocontrol agent Fusarium oxysporum f.sp. strigae has no adverse effect on indigenous total fungal communities and specific AMF taxa in contrasting maize rhizospheres[J]. Fungal Ecology, 2016, 23:1-10.
2015
Azevedo G C , Cheavegattigianotto A , Bárbara F Negri, et al. Multiple interval QTL mapping and searching for PSTOL1 homologs associated with root morphology, biomass accumulation and phosphorus content in maize seedlings under low-P[J]. BMC Plant Biology, 2015, 15.
Nair S K , Babu R , Magorokosho C , et al. Fine mapping ofMsv1, a major QTL for resistance to Maize Streak Virus leads to development of production markers for breeding pipelines[J]. Theoretical and Applied Genetics, 2015, 128(9):1839-1854.
Horn F , Habeku? A , Stich B . Linkage mapping of Barley yellow dwarf virus resistance in connected populations of maize[J]. BMC Plant Biology, 2015, 15(1):29.
Chandrasena, D., Y. Wang, C. Bales, J. Yuan, C. Gu, and D. Wang. 2015. Pyramiding rag3, rag1b, rag4, and rag1c Aphid-Resistant Genes in Soybean Germplasm. Crop Sci. 55:2108-2115. doi:10.2135/cropsci2015.02.0089
Chen, Z.Y., Warburton, M.L., Hawkins, L.K., Wei, Q., Brown, R.L., Bhatnagar, D., Raruang, Y. 2016. Production of the 14 kDa trypsin inhibitor protein is important for maize resistance against Aspergillus flavus infection/aflatoxin. World Mycotoxin Journal. 9(2):215-228.
Hwang S , King C A , Ray J D , et al. Confirmation of delayed canopy wilting QTLs from multiple soybean mapping populations[J]. Theoretical and Applied Genetics, 2015, 128(10):2047-2065.
Relationships between heterosis, genetic distances and specific combining ability among CIMMYT and Zimbabwe developed maize inbred lines under stress and optimal conditions[J]. Euphytica, 2015, 204(3):635-647.
Kappel K , Schr?Der U . Substitution of high-priced fish with low-priced species: Adulteration of common sole in German restaurants[J]. Food Control, 2016, 59:478-486.
Haring E , Voyta L L , Barbara D?ubl, et al. Comparison of genetic and morphological characters in fossil teeth of grey voles from the Russian Far East (Rodentia: Cricetidae: Alexandromys)[J]. Mammalian Biology, 2015, 80(6):496-504.
Lennon J R , Matthew K , Major G , et al. Identification of Alleles Conferring Resistance to Gray Leaf Spot in Maize Derived from its Wild Progenitor Species Teosinte[J]. Crop Science, 2016, 56(1):209-.
Pili N N , Fran?A S C , Kyndt T , et al. Analysis of fungal endophytes associated with rice roots from irrigated and upland ecosystems in Kenya[J]. Plant and Soil, 2016, 405(1-2):371-380.
Tandzi L.N. and Ngonkeu E.L., 2015, Molecular Characterization of Selected Maize (Zea mays L.) Inbred Lines, Maize Genomics and Genetics, Vol.6, No.2, 1-5 (doi: 10.5376/mgg.2015.06.0002)
Li L , Hill-Skinner S , Liu S , et al. The maize brown midrib4 (bm4) gene encodes a functional folylpolyglutamate synthase (FPGS)[J]. Plant Journal, 2015, 81(3):493-504.
2014
Tang H M , Liu S , Hillskinner S , et al. The maize brown midrib2 (bm2) gene encodes a methylenetetrahydrofolate reductase that contributes to lignin accumulation.[J]. Plant Journal, 2014, 77(3):380-392.
Rosas J E , Bonnecarrère, Victoria, Pérez de Vida, Fernando. One-step, codominant detection of imidazolinone resistance mutations in weedy rice (Oryza sativa L.)[J]. Electronic Journal of Biotechnology, 2014, 17(2):95-101.
Jamann T M , Poland J A , Kolkman J M , et al. Unraveling Genomic Complexity at a Quantitative Disease Resistance Locus in Maize[J]. Genetics, 2014, 198(1):333-344.
Beyene Y , Semagn K , Mugo S . Genetic relationships and structure among open-pollinated maize varieties adapted to eastern and southern Africa using microsatellite markers[J]. Molecular Breeding, 2014, 34(3):1423-1435.
Sandhu N , Torres R O , Cruz M T S , et al. Traits and QTLs for development of dry direct-seeded rainfed rice varieties[J]. Journal of Experimental Botany, 2014.
Semagn K , Beyene Y , Babu R , et al. Quantitative Trait Loci Mapping and Molecular Breeding for Developing Stress Resilient Maize for Sub-Saharan Africa[J]. Crop Science, 2015, 55(4):1449.
Luo W , Guo T , Yang Q , et al. Stacking of five favorable alleles for amylase content, fragrance and disease resistance into elite lines in rice ( Oryza sativa) by using four HRM-based markers and a linked gel-based marker[J]. Molecular Breeding, 2014, 34(3):805-815.
King Z , Serrano J , Roger Boerma H , et al. Non-toxic and efficient DNA extractions for soybean leaf and seed chips for high-throughput and large-scale genotyping[J]. Biotechnology Letters, 2014, 36(9):1875-1879.
Dao A , Sanou J , Mitchell S E , et al. Genetic diversity among INERA maize inbred lines with single nucleotide polymorphism (SNP) markers and their relationship with CIMMYT, IITA, and temperate lines[J]. BMC Genetics, 2014, 15(1):127.
Zheng P , Babar A , Parthasarathy S , et al. A truncated FatB resulting from a single nucleotide insertion is responsible for reducing saturated fatty acids in maize seed oil[J]. Theoretical and Applied Genetics, 2014, 127(7):1537-1547.
Mideros S X , Warburton M L , Jamann T M , et al. Quantitative Trait Loci Influencing Mycotoxin Contamination of Maize: Analysis by Linkage Mapping, Characterization of Near-Isogenic Lines, and Meta-Analysis[J]. Crop Science, 2014, 54(1):127.
Flávia F. Mendes, Lauro J. M. Guimar?es, Jo?o Candido Souza, et al. Genetic Architecture of Phosphorus Use Efficiency in Tropical Maize Cultivated in a Low-P Soil[J]. Crop Science, 2014, 54(4):1530.
Suwarno W B , Pixley K V , Palacios-Rojas N , et al. Formation of Heterotic Groups and Understanding Genetic Effects in a Provitamin A Biofortified Maize Breeding Program[J]. Crop Science, 2014, 54(1):14.
Ruddle P , Whetten R , Cardinal A , et al. Effect of Δ9-stearoyl-ACP-desaturase-C mutants in a high oleic background on soybean seed oil composition.[J]. Tag.theoretical & Applied Genetics.theoretische Und Angewandte Genetik, 2014, 127(2):349-58.
Cardinal A J , Whetten R , Wang S , et al. Mapping the low palmitate fap1 mutation and validation of its effects in soybean oil and agronomic traits in three soybean populations[J]. Tag.theoretical & Applied Genetics.theoretische Und Angewandte Genetik, 2014, 127(1):97-111.
2013
Imai I , Kimball J A , Conway B , et al. Validation of yield-enhancing quantitative trait loci from a low-yielding wild ancestor of rice[J]. Molecular Breeding, 2013, 32(1):101-120.
Haegeman A , Bauters L , Kyndt T , et al. Identification of candidate effector genes in the transcriptome of the rice root knot nematode\r, Meloidogyne graminicola[J]. Molecular Plant Pathology, 2013, 14(4):379-390.
Atalah B A , Fouquaert E , Damme E J M V . Promoter Analysis for Three Types of EUL-Related Rice Lectins in Transgenic Arabidopsis[J]. Plant Molecular Biology Reporter, 2013, 31(6).
Lamkey C M , Helms T C , Goos R J . Marker-assisted versus phenotypic selection for iron-deficiency chlorosis in soybean[J]. Euphytica, 2013, 194(1):67-78.
Almeida G D , Makumbi D , Magorokosho C , et al. QTL mapping in three tropical maize populations reveals a set of constitutive and adaptive genomic regions for drought tolerance[J]. Theoretical & Applied Genetics, 2013, 126(3):583-600.
2012
Ruddle II, P. and Whetten, R. and Cardinal, A. and et al, . (2012) Effect of a novel mutation in a D9-stearoyl-ACP-desaturase on soybean seed oil composition. TAG Theoretical and Applied Genetics. pp. 1-9.
Chen W , Vanopdorp N , Fitzl D , et al. Transposon insertion in a cinnamyl alcohol dehydrogenase gene is responsible for abrown midrib1mutation in maize[J]. Plant Molecular Biology, 2012, 80(3):289-297.
Semagn K , Magorokosho C , Vivek B S , et al. Molecular characterization of diverse CIMMYT maize inbred lines from eastern and southern Africa using single nucleotide polymorphic markers[J]. BMC Genomics, 2012, 13.
Semagn K , Beyene Y , Makumbi D , et al. Quality control genotyping for assessment of genetic identity and purity in diverse tropical maize inbred lines[J]. Theoretical and Applied Genetics, 2012, 125(7):1487-1501.
Bernardi J , Lanubile A , Li Q B , et al. Impaired Auxin Biosynthesis in the defective endosperm18 Mutant Is Due to Mutational Loss of Expression in the ZmYuc1 Gene Encoding Endosperm-Specific YUCCA1 Protein in Maize[J]. PLANT PHYSIOLOGY, 2012, 160(3):1318-1328.
Prigge V , Xu X , Li L , et al. New insights into the genetics of in vivo induction of maternal haploids, the backbone of doubled haploid technology in maize[J]. Genetics, 2012, 190(2):781.
Mammadov J , Chen W , Mingus J , et al. Development of versatile gene-based SNP assays in maize (Zea maysL.)[J]. Molecular Breeding, 2012, 29(3):779-790.
Li S , Smith J R , Ray J D , et al. Identification of a new soybean rust resistance gene in PI 567102B[J]. Theoretical and Applied Genetics, 2012, 125(1):133-142.